تحويل Excel إلى إطار بيانات Pandas
Contents
[
Hide
]
باستخدام Aspose.Cells for Python via .NET API، يمكنك تحويل Excel، TSV، CSV، Json والعديد من التنسيقات المختلفة إلى إطار بيانات Pandas
تحويل Excel إلى إطار بيانات Pandas عبر بيانات json
إليك مقطع من الكود الخاص بمثال يظهر كيفية تصدير بيانات Excel إلى إطار بيانات Pandas عبر بيانات json باستخدام Aspose.Cells for Python via .NET:
- إنشاء كتاب عمل وإضافة بعض القيم.
- تصدير بيانات Excel إلى سلسلة JSON.
- استخدام مكتبة pandas لقراءة بيانات JSON.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from aspose.cells.utility import JsonUtility, JsonLayoutOptions | |
from aspose.cells import Workbook, Worksheet, Cells, JsonSaveOptions | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Get the first worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
# Add some values | |
cells.get("A1").value = "Name" | |
cells.get("B1").value = "Age" | |
cells.get("C1").value = "City" | |
cells.get("A2").value = "Alice" | |
cells.get("B2").value = 25 | |
cells.get("C2").value = "New York" | |
cells.get("A3").value = "Bob" | |
cells.get("B3").value = 30 | |
cells.get("C3").value = "San Francisco" | |
cells.get("A4").value = "Charlie" | |
cells.get("B4").value = 35 | |
cells.get("C4").value = "Los Angeles" | |
jsonSaveOptions = JsonSaveOptions() | |
# Save data to json string | |
json = JsonUtility.export_range_to_json(cells.max_display_range, jsonSaveOptions); | |
print(json) | |
# Read json string using pandas | |
dfData = pd.read_json(json) | |
print(dfData) |
تحويل إطار بيانات Pandas إلى Excel مباشرة
إليك مقطع من الكود الخاص بمثال يظهر كيفية تصدير بيانات Excel إلى إطار بيانات Pandas مباشرة باستخدام Aspose.Cells for Python via .NET:
- إنشاء كتاب عمل وإضافة بعض القيم.
- عبور بيانات Excel وتصدير البيانات إلى إطار بيانات Pandas باستخدام Aspose.Cells for Python via .NET.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from aspose.cells.utility import JsonUtility, JsonLayoutOptions | |
from aspose.cells import Workbook, Worksheet, Cells, JsonSaveOptions | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Get the first worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
# Add some values | |
cells.get("A1").value = "Name" | |
cells.get("B1").value = "Age" | |
cells.get("C1").value = "City" | |
cells.get("A2").value = "Alice" | |
cells.get("B2").value = 25 | |
cells.get("C2").value = "New York" | |
cells.get("A3").value = "Bob" | |
cells.get("B3").value = 30 | |
cells.get("C3").value = "San Francisco" | |
cells.get("A4").value = "Charlie" | |
cells.get("B4").value = 35 | |
cells.get("C4").value = "Los Angeles" | |
rowCount = cells.max_data_row | |
columnCount = cells.max_data_column | |
columnDatas=[] | |
for c in range(columnCount + 1): | |
currCell = cells.get_cell(0, c) | |
columnDatas.append(currCell.value) | |
result = pd.DataFrame(columns=columnDatas, dtype=object) | |
for i in range(1, rowCount + 1): | |
rowarray = [] | |
for j in range(columnCount + 1): | |
currCell = cells.get_cell(i, j) | |
rowarray.append(currCell.value) | |
print(rowarray) | |
result.loc[i - 1] = rowarray | |
print(result) |