Преобразование Excel в Pandas DataFrame
Contents
[
Hide
]
Используя Aspose.Cells для Python via .NET API, вы можете преобразовать Excel, TSV, CSV, Json и множество других форматов в pandas DataFrame.
Преобразование Excel в Pandas DataFrame через данные json
Вот пример фрагмента кода, демонстрирующий, как экспортировать данные Excel в pandas DataFrame через данные json с использованием Aspose.Cells для Python via .NET:
- Создать книгу и добавить некоторые значения.
- Экспортировать данные excel в JSON строку.
- Использовать библиотеку pandas для чтения данных JSON.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from aspose.cells.utility import JsonUtility, JsonLayoutOptions | |
from aspose.cells import Workbook, Worksheet, Cells, JsonSaveOptions | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Get the first worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
# Add some values | |
cells.get("A1").value = "Name" | |
cells.get("B1").value = "Age" | |
cells.get("C1").value = "City" | |
cells.get("A2").value = "Alice" | |
cells.get("B2").value = 25 | |
cells.get("C2").value = "New York" | |
cells.get("A3").value = "Bob" | |
cells.get("B3").value = 30 | |
cells.get("C3").value = "San Francisco" | |
cells.get("A4").value = "Charlie" | |
cells.get("B4").value = 35 | |
cells.get("C4").value = "Los Angeles" | |
jsonSaveOptions = JsonSaveOptions() | |
# Save data to json string | |
json = JsonUtility.export_range_to_json(cells.max_display_range, jsonSaveOptions); | |
print(json) | |
# Read json string using pandas | |
dfData = pd.read_json(json) | |
print(dfData) |
Преобразуйте DataFrame Pandas непосредственно в Excel
Вот пример фрагмента кода, демонстрирующий, как экспортировать данные Excel в pandas DataFrame напрямую с использованием Aspose.Cells для Python via .NET:
- Создать книгу и добавить некоторые значения.
- Обойти данные в Excel и экспортировать данные в Pandas DataFrame с использованием Aspose.Cells для Python via .NET.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from aspose.cells.utility import JsonUtility, JsonLayoutOptions | |
from aspose.cells import Workbook, Worksheet, Cells, JsonSaveOptions | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Get the first worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
# Add some values | |
cells.get("A1").value = "Name" | |
cells.get("B1").value = "Age" | |
cells.get("C1").value = "City" | |
cells.get("A2").value = "Alice" | |
cells.get("B2").value = 25 | |
cells.get("C2").value = "New York" | |
cells.get("A3").value = "Bob" | |
cells.get("B3").value = 30 | |
cells.get("C3").value = "San Francisco" | |
cells.get("A4").value = "Charlie" | |
cells.get("B4").value = 35 | |
cells.get("C4").value = "Los Angeles" | |
rowCount = cells.max_data_row | |
columnCount = cells.max_data_column | |
columnDatas=[] | |
for c in range(columnCount + 1): | |
currCell = cells.get_cell(0, c) | |
columnDatas.append(currCell.value) | |
result = pd.DataFrame(columns=columnDatas, dtype=object) | |
for i in range(1, rowCount + 1): | |
rowarray = [] | |
for j in range(columnCount + 1): | |
currCell = cells.get_cell(i, j) | |
rowarray.append(currCell.value) | |
print(rowarray) | |
result.loc[i - 1] = rowarray | |
print(result) |