Convertir Excel a DataFrame de Pandas
Contents
[
Hide
]
Usando Aspose.Cells para Python via .NET API, puedes convertir Excel, TSV, CSV, Json y muchos formatos diferentes a DataFrame de Pandas.
Convertir Excel a DataFrame de Pandas a través de datos json
Aquí tienes un ejemplo de código para demostrar cómo exportar datos de Excel a un DataFrame de Pandas a través de datos json utilizando Aspose.Cells para Python via .NET:
- Crea un libro de trabajo y agrega algunos valores.
- Exportar datos de excel a cadena JSON.
- Utiliza la librería pandas para leer datos JSON.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from aspose.cells.utility import JsonUtility, JsonLayoutOptions | |
from aspose.cells import Workbook, Worksheet, Cells, JsonSaveOptions | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Get the first worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
# Add some values | |
cells.get("A1").value = "Name" | |
cells.get("B1").value = "Age" | |
cells.get("C1").value = "City" | |
cells.get("A2").value = "Alice" | |
cells.get("B2").value = 25 | |
cells.get("C2").value = "New York" | |
cells.get("A3").value = "Bob" | |
cells.get("B3").value = 30 | |
cells.get("C3").value = "San Francisco" | |
cells.get("A4").value = "Charlie" | |
cells.get("B4").value = 35 | |
cells.get("C4").value = "Los Angeles" | |
jsonSaveOptions = JsonSaveOptions() | |
# Save data to json string | |
json = JsonUtility.export_range_to_json(cells.max_display_range, jsonSaveOptions); | |
print(json) | |
# Read json string using pandas | |
dfData = pd.read_json(json) | |
print(dfData) |
Convertir DataFrame de Pandas a Excel directamente
Aquí tienes un ejemplo de código para demostrar cómo exportar datos de Excel a un DataFrame de Pandas directamente utilizando Aspose.Cells para Python via .NET:
- Crea un libro de trabajo y agrega algunos valores.
- Recorrer los datos de Excel y exportar datos a DataFrame de Pandas utilizando Aspose.Cells para Python via .NET.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from aspose.cells.utility import JsonUtility, JsonLayoutOptions | |
from aspose.cells import Workbook, Worksheet, Cells, JsonSaveOptions | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Get the first worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
# Add some values | |
cells.get("A1").value = "Name" | |
cells.get("B1").value = "Age" | |
cells.get("C1").value = "City" | |
cells.get("A2").value = "Alice" | |
cells.get("B2").value = 25 | |
cells.get("C2").value = "New York" | |
cells.get("A3").value = "Bob" | |
cells.get("B3").value = 30 | |
cells.get("C3").value = "San Francisco" | |
cells.get("A4").value = "Charlie" | |
cells.get("B4").value = 35 | |
cells.get("C4").value = "Los Angeles" | |
rowCount = cells.max_data_row | |
columnCount = cells.max_data_column | |
columnDatas=[] | |
for c in range(columnCount + 1): | |
currCell = cells.get_cell(0, c) | |
columnDatas.append(currCell.value) | |
result = pd.DataFrame(columns=columnDatas, dtype=object) | |
for i in range(1, rowCount + 1): | |
rowarray = [] | |
for j in range(columnCount + 1): | |
currCell = cells.get_cell(i, j) | |
rowarray.append(currCell.value) | |
print(rowarray) | |
result.loc[i - 1] = rowarray | |
print(result) |