Usando Aspose.Cells para Python via .NET como motor de Excel para Pandas
Contents
[
Hide
]
Esta guía demuestra cómo integrar Aspose.Cells para Python via .NET como un motor de Excel personalizado dentro de la biblioteca
pandas, permitiéndote analizar archivos .xlsx, .xls, etc. con alta fidelidad.
¿Por qué usar Aspose.Cells para Python via .NET?
Aspose.Cells ofrece:
- Soporte avanzado de Excel (fórmulas, gráficos, formato, celdas combinadas, etc.)
- Soporte para múltiples formatos:
.xls,.xlsx,.xlsb,.ods,.csv,.html - Mejor precisión para hojas de cálculo complejas en comparación con
openpyxloxlrd
Prerequisites
- Install a C compiler
- Here, we use the Windows platform as an example for explanation.If you have installed Visual Studio 2022 on your Windows system, you can open the x64 Native Tools Command Prompt for VS 2022 and run the
clcommand to check the version of the C++ compiler. Make sure the compiler version is 19.3x or higher before proceeding with the following build steps. - Make sure that you have cloned the repository
git clone https://github.com/pandas-dev/pandas.git
cdal directorio fuente de pandas que acabas de crear con el comando clone
Step 1: Create an isolated environment
# Set up virtual environment
python -m venv .venv
.\.venv\Scripts\activate # on Windows
# source .venv/bin/activate # on Linux/macOS
# Install aspose-cells-python
pip install aspose-cells-python
# Install the build dependencies
python -m pip install -r requirements-dev.txt
Step 2: Create Aspose engine adapter
Create a new file:
pandas/io/excel/_asposecells.py
Add the following content:
# pandas/io/excel/_asposecells.py
import pandas as pd
from aspose.cells import Workbook
class AsposeCellsExcelReader:
def __init__(self, filepath_or_buffer, sheet_name=0, header=0, **kwargs):
self.filepath = filepath_or_buffer
self.sheet_name = sheet_name
self.header = header
def parse(self, sheet_name, header=0, **kwargs):
wb = Workbook(self.filepath)
worksheet = wb.worksheets[sheet_name] if isinstance(sheet_name, int) else wb.worksheets.get(sheet_name)
# Get the Cells collection from the worksheet
cells = worksheet.cells
# Calculate number of columns: max_col - min_col (both are 0-based)
col_count = cells.max_data_column - cells.min_data_column
# Initialize a list to hold all the row data
output_data = []
# Get the index of the first row that contains data
first_data_row_Index = cells.min_data_row
# Iterate through all the rows
for row in cells.rows:
if row is None:
continue # Skip if the row is not initialized
row_data = []
for cell in row:
row_data.append(cell.value)
output_data.append(row_data)
# Prepare the column names
columns = []
if header is not None:
row = cells.rows[first_data_row_Index]
for cell in row:
columns.append(cell.value)
# Remove the header row from the data
output_data = output_data[1:]
else:
# If no header, generate default column names like "Unnamed: 0", "Unnamed: 1", ...
columns = [f"Unnamed: {i}" for i in range(col_count + 1)]
# Convert the data into a pandas DataFrame
return pd.DataFrame(output_data, columns=columns)
def close(self):
pass # Required by pandas API
Step 3: Register the Aspose Engine in Pandas
In pandas/io/excel/_base.py, find the class ExcelFile class, and add
Add the following import line after the existing from pandas.io.excel._xlrd import XlrdReader:
from pandas.io.excel._asposecells import AsposeCellsExcelReader
y luego añade el siguiente código en _engines: Mapping[str, Any]
_engines: Mapping[str, Any] = {
...
"asposecells": AsposeCellsExcelReader,
}
Step 4: Build and install pandas
# build and install pandas
python -m pip install -ve . --no-build-isolation
✅ Si encuentras un error de compilación durante el proceso de construcción, como:Cython.Compiler.Errors.InternalError: Internal compiler error: ‘free_threading_config.pxi’ not found, puedes intentar ejecutar el siguiente comando y luego compilar de nuevo.
# remove all untracked files, directories, and ignored files from the working directory.
git clean -xfd
Step 5: Use the Engine
You can use the following Excel file for testing.
import pandas as pd
# asposecells
df = pd.read_excel("test.xlsx", engine="asposecells", sheet_name=0, header=0)
# print and check DataFrame
print(df)
Después de ejecutarlo, deberías obtener un resultado como este.

Notes
- For production use, a valid Aspose.Cells for Python via .NET license is required.
- This approach is ideal for testing or local enhancement of
read_excelbehavior. - You can also use
Aspose.Cells for Python via .NETdirectly outside of pandas if desired.