ExcelをPandas DataFrameに変換

ExcelをJSONデータを介してPandas DataFrameに変換する

Aspose.Cells for Python via .NETを使用して、ExcelデータをJSONデータを介してPandas DataFrameにエクスポートする方法を示すコードスニペットの例です。

  1. Workbookを作成していくつかの値を追加します。
  2. ExcelデータをJSON文字列にエクスポートします。
  3. pandasライブラリを使用してJSONデータを読み込みます。
import pandas as pd
from aspose.cells.utility import JsonUtility, JsonLayoutOptions
from aspose.cells import Workbook, Worksheet, Cells, JsonSaveOptions
# Create a new Aspose.Cells Workbook
workbook = Workbook()
# Get the first worksheet
worksheet = workbook.worksheets[0]
# Get the cells
cells = worksheet.cells
# Add some values
cells.get("A1").value = "Name"
cells.get("B1").value = "Age"
cells.get("C1").value = "City"
cells.get("A2").value = "Alice"
cells.get("B2").value = 25
cells.get("C2").value = "New York"
cells.get("A3").value = "Bob"
cells.get("B3").value = 30
cells.get("C3").value = "San Francisco"
cells.get("A4").value = "Charlie"
cells.get("B4").value = 35
cells.get("C4").value = "Los Angeles"
jsonSaveOptions = JsonSaveOptions()
# Save data to json string
json = JsonUtility.export_range_to_json(cells.max_display_range, jsonSaveOptions);
print(json)
# Read json string using pandas
dfData = pd.read_json(json)
print(dfData)

Pandas DataFrame を直接 Excel に変換

Aspose.Cells for Python via .NETを使用して、ExcelデータをPandas DataFrameに直接エクスポートする方法を示すコードスニペットの例です。

  1. Workbookを作成していくつかの値を追加します。
  2. ExcelデータをトラバースしてAspose.Cells for Python via .NETを使用してPandas DataFrameにデータをエクスポートします。
import pandas as pd
from aspose.cells import Workbook, Worksheet, Cells
# Create a new Aspose.Cells Workbook
workbook = Workbook()
# Get the first worksheet
worksheet = workbook.worksheets[0]
# Get the cells
cells = worksheet.cells
# Add some values
cells.get("A1").value = "Name"
cells.get("B1").value = "Age"
cells.get("C1").value = "City"
cells.get("A2").value = "Alice"
cells.get("B2").value = 25
cells.get("C2").value = "New York"
cells.get("A3").value = "Bob"
cells.get("B3").value = 30
cells.get("C3").value = "San Francisco"
cells.get("A4").value = "Charlie"
cells.get("B4").value = 35
cells.get("C4").value = "Los Angeles"
rowCount = cells.max_data_row
columnCount = cells.max_data_column
columnDatas = []
header_row = None
for row in cells.rows.__iter__():
if row is None:
continue
header_row = row
for cell in row.__iter__():
columnDatas.append(cell.value)
break
result = pd.DataFrame(columns=columnDatas, dtype=object)
row_index = 0
for row in cells.rows.__iter__():
if row is None:
continue
if row == header_row:
continue
row_values = []
for cell in row.__iter__():
row_values.append(cell.value)
# print(row_values)
result.loc[row_index] = row_values
row_index += 1
print(result)