Edge Detection Filters
Edge Detection Custom Kernel Filter in Python
Crafting a custom kernel filter for edge detection echoes the characteristics of the Sharpen filter, albeit with a distinctive point: the sum of matrix elements totals zero. Consequently, the resulting image takes on an almost entirely black appearance, punctuated only by pixels deviating from their surroundings. These exceptional pixels typically mark the boundaries between diverse areas or edges.
In this illustrative scenario, the central pixel's value is compared to its neighboring pixels. You have the flexibility to define a custom kernel, finely tuned to identify edges either horizontally, vertically or both.
# edge detection custom kernel
[
[ 0, -1, 0,],
[ -1, 4, -1,],
[ 0, -1, 0,],
]
In the end, the application of the filter culminates in preserving only the contours of the image set on a black background.


Python code example
The provided Python code example showcases the utilization of the Aspose.Imaging Python API. Utilize the `ConvolutionFilter` class, which provides pre-defined kernel filters, alongside the option to incorporate a `custom_kernel` matrix. In this instance, image templates in raster PNG and as well as vector SVG formats are loaded from the "templates" folder, and a range of filters are applied from a predefined list.
import os, random | |
import aspose.pycore as aspycore | |
from aspose.imaging import Image, RasterImage, VectorImage | |
from aspose.imaging.imagefilters.complexutils import Complex | |
from aspose.imaging.imagefilters.convolution import * | |
from aspose.imaging.imagefilters.filteroptions import * | |
if 'TEMPLATE_DIR' in os.environ: | |
templates_folder = os.environ['TEMPLATE_DIR'] | |
else: | |
templates_folder = r"C:\Users\USER\Downloads\templates" | |
delete_output = 'SAVE_OUTPUT' not in os.environ | |
def delete_file(file): | |
if delete_output: | |
os.remove(file) | |
# Example code: | |
def filter(raster, options, output_path): | |
raster.filter(raster.bounds, options) | |
raster.save(output_path) | |
def get_random_kernel(cols, rows): | |
custom_kernel = [0.0] * (cols * rows) | |
for y in range(rows): | |
for x in range(cols): | |
custom_kernel[y*cols + x] = random.random() | |
return custom_kernel | |
size: int = 5 | |
sigma: float = 1.5 | |
angle: float = 45 | |
custom_kernel = get_random_kernel(size, 7) | |
custom_complex = ConvolutionFilter.to_complex(custom_kernel) | |
kernel_filters = [ | |
# convolution filters | |
ConvolutionFilterOptions(ConvolutionFilter.get_emboss_3x3()), | |
ConvolutionFilterOptions(ConvolutionFilter.get_emboss_5x5()), | |
ConvolutionFilterOptions(ConvolutionFilter.get_sharpen_3x3()), | |
ConvolutionFilterOptions(ConvolutionFilter.get_sharpen_5x5()), | |
ConvolutionFilterOptions(ConvolutionFilter.get_blur_box(size)), | |
ConvolutionFilterOptions(ConvolutionFilter.get_blur_motion(size, angle)), | |
ConvolutionFilterOptions(ConvolutionFilter.get_gaussian(size, sigma)), | |
ConvolutionFilterOptions(custom_kernel), | |
GaussianBlurFilterOptions(size, sigma), | |
SharpenFilterOptions(size, sigma), | |
MedianFilterOptions(size), | |
# deconvolution filters | |
DeconvolutionFilterOptions(ConvolutionFilter.get_gaussian(size, sigma)), | |
DeconvolutionFilterOptions(custom_kernel), | |
DeconvolutionFilterOptions(custom_complex), | |
GaussWienerFilterOptions(size, sigma), | |
MotionWienerFilterOptions(size, sigma, angle) | |
] | |
data_dir = templates_folder | |
input_paths = [ | |
os.path.join(data_dir, "template.png"), | |
os.path.join(data_dir, "template.svg") | |
] | |
outputs = [] | |
for input_path in input_paths: | |
for i, options in enumerate(kernel_filters): | |
with Image.load(input_path) as image: | |
output_path = f"{input_path}-{i}.png" | |
if aspycore.is_assignable(image, RasterImage): | |
raster = aspycore.as_of(image, RasterImage) | |
filter(raster, options, output_path) | |
outputs.append(output_path) | |
elif aspycore.is_assignable(image, VectorImage): | |
vector = aspycore.as_of(image, VectorImage) | |
vector_as_png = input_path + ".png" | |
if not os.path.exists(vector_as_png): | |
vector.save(vector_as_png) | |
outputs.append(vector_as_png) | |
with Image.load(vector_as_png) as png: | |
filter(aspycore.as_of(png, RasterImage), options, output_path) | |
outputs.append(output_path) | |
# Removing all output files | |
for p in outputs: | |
delete_file(p) |