AsposeAI class

The AsposeAI class provides the bridge between LLM models and the OCR engine.

🛠 Constructors

AsposeAI()
AsposeAI(logging)

You can also pass optional logging and customization callbacks.

Configuration

⚙️ AsposeAIModelConfig

Property Type Description
allow_auto_download string If true, the model will be automatically downloaded if not available locally.
directory_model_path string Optional path where downloaded or processed models will be cached. If not set, a default system location will be used.
file_model_path string Local path to the folder containing the model files. If specified, this will be used instead of downloading. Default empty.
hugging_face_quantization string Optional quantization type to use when downloading from HuggingFace. Examples: “int8”, “fp16”, “none”. Default q4_k_m.
hugging_face_repo_id string ID of the model on HuggingFace (e.g., “openai/gpt2”). If specified, the model will be downloaded from HuggingFace. Default bartowski/Qwen2.5-3B-Instruct-GGUF.
context_size int Defines the maximum number of tokens the LLM can use as context during inference. If null, the default context size defined by the model will be used. Larger values allow the model to consider more text but may require more memory.
gpu_layers int Number of GPU layers to use for the model. If not specified, the default value (40) will be used. Set to 0 to run entirely on the CPU.

🧠 AsposeAI Class – Core Methods

Method Description
set_post_processor(processor, custom_settings) Adds a custom AI postprocessor to enhance OCR results.
run_postprocessor(res) Enhances plain recognized text strings using registered AI modules.
run_postprocessor(res) Enhances structured OCR output using registered AI modules.
free_resources() Explicitly unloads AI models and clears memory.
list_local() Lists all local AI models available in the configured folder.
get_local_path() Returns the directory path of the current model location.
is_initialized() Checks if the AI engine and model are ready to use.