Converti NumPy in Excel
Introduzione a NumPy
NumPy (Numerical Python) è un’estensione open source per calcoli numerici di Python. Questo strumento può essere utilizzato per memorizzare e elaborare grandi matrici, molto più efficiente della struttura di liste nidificate di Python (che può anche essere utilizzata per rappresentare matrici). Supporta un gran numero di array dimensionali e operazioni su matrici e fornisce anche un gran numero di librerie di funzioni matematiche per operazioni su array.
Le principali funzioni di NumPy:
- Ndarray, un oggetto di array multidimensionale, è una struttura dati veloce, flessibile e di risparmio di spazio.
- Operazioni di algebra lineare, inclusa la moltiplicazione di matrici, la trasposizione, l’inversione, ecc.
- Trasformata di Fourier, esegue una trasformata di Fourier veloce su un array.
- Operazione rapida di array in virgola mobile.
- Integrare il codice del linguaggio C in Python per eseguirlo più velocemente.
Utilizzando Aspose.Cells per Python via .NET API, puoi convertire NumPy ndarray in Excel, OpenOffice, Pdf, Json e molti altri formati.
Come convertire NumPy ndarray in Cartella di lavoro di Excel
Ecco un esempio di frammento di codice per dimostrare come importare dati da un array NumPy in un file Excel utilizzando Aspose.Cells per Python via .NET:
- Creare un campione di dati di array NumPy.
- Attraversare l’array NumPy e importare i dati utilizzando Aspose.Cells per Python via .NET.
import numpy as np | |
import pandas as pd | |
import aspose.cells | |
from aspose.cells import Workbook, Worksheet, Range, CellsHelper | |
def put_cell_value(cells, raw_value, row , column): | |
cell = cells.get(row , column) | |
dtype = type(raw_value) | |
match dtype: | |
case np.bool_ : | |
value = bool(raw_value) | |
case np.int_ : | |
value = int(raw_value) | |
case np.intc : | |
value = int(raw_value) | |
case np.intp : | |
value = int(raw_value) | |
case np.int8 : | |
value = int(raw_value) | |
case np.int16 : | |
value = int(raw_value) | |
case np.int32 : | |
value = int(raw_value) | |
case np.int64 : | |
value = int(raw_value) | |
case np.uint8 : | |
value = int(raw_value) | |
case np.uint16 : | |
value = int(raw_value) | |
case np.uint32 : | |
value = int(raw_value) | |
case np.uint64 : | |
value = int(raw_value) | |
case np.float_: | |
value = int(raw_value) | |
case np.float16: | |
value = float(raw_value) | |
case np.float32: | |
value = float(raw_value) | |
case np.float64: | |
value = float(raw_value) | |
case np.single: | |
value = float(raw_value) | |
case np.double: | |
value = float(raw_value) | |
case np.datetime64 : | |
ts = pd.to_datetime(str(raw_value)) | |
value = ts.strftime('%Y.%m.%d') | |
case _: | |
value = raw_value | |
cell.put_value(value) | |
pass | |
def import_table_data_into_cells(cells,table_data,row_index,column_index,is_vertical): | |
table_row_index = row_index | |
table_column_index = column_index | |
row_count = len( table_data) | |
column_count = 0 | |
for table_row in table_data: | |
for table_cell in table_row: | |
column_count =len( table_row) | |
put_cell_value(cells,table_cell,table_row_index,table_column_index) | |
if is_vertical : | |
table_row_index = table_row_index + 1 | |
else: | |
table_column_index = table_column_index + 1 | |
if is_vertical : | |
table_row_index = row_index | |
table_column_index = table_column_index + 1 | |
else: | |
table_column_index = column_index | |
table_row_index = table_row_index + 1 | |
if is_vertical : | |
end_row_index = row_index + row_count - 1 | |
end_column_index = table_column_index - 1 | |
else: | |
end_row_index = table_row_index - 1 | |
end_column_index = column_index + column_count - 1 | |
return (row_index,column_index,end_row_index,end_column_index) | |
excel_data = np.array([[['City', 'Region', 'Store'], ['Chicago', 'Central', 3055], ['New York', 'East', 3036], ['Detroit', 'Central', 3074]], | |
[['City2', 'Region2', 'Store3'], ['Seattle', 'West', 3000], ['philadelph', 'East', 3082], ['Detroit', 'Central', 3074]], [['City3', 'Region3', 'Store3'], ['Seattle', 'West', 3166], ['New York', 'East', 3090], ['Chicago', 'Central', 3055]]] ) | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
begin_row_index = 0 | |
begin_column_index = 0 | |
is_vertical = False | |
sheet_index = 1 | |
for table_data in excel_data: | |
curr_sheet = workbook.worksheets.add("Sheet_data_" + str(sheet_index)) | |
curr_cells = curr_sheet.cells | |
import_table_data_into_cells(curr_cells , table_data , begin_row_index,begin_column_index,is_vertical) | |
sheet_index += 1 | |
workbook.save("out.xlsx") |
Il risultato dell’output:
Come convertire NumPy ndarray in Foglio di lavoro
Ecco un esempio di frammento di codice per dimostrare come importare dati da un array NumPy in un file Excel utilizzando Aspose.Cells per Python via .NET:
- Creare un campione di dati di array NumPy.
- Attraversare l’array NumPy e importare i dati utilizzando Aspose.Cells per Python via .NET.
import numpy as np | |
import pandas as pd | |
import aspose.cells | |
from aspose.cells import Workbook, Worksheet, Range, CellsHelper | |
def put_cell_value(cells, raw_value, row , column): | |
cell = cells.get(row , column) | |
dtype = type(raw_value) | |
match dtype: | |
case np.bool_ : | |
value = bool(raw_value) | |
case np.int_ : | |
value = int(raw_value) | |
case np.intc : | |
value = int(raw_value) | |
case np.intp : | |
value = int(raw_value) | |
case np.int8 : | |
value = int(raw_value) | |
case np.int16 : | |
value = int(raw_value) | |
case np.int32 : | |
value = int(raw_value) | |
case np.int64 : | |
value = int(raw_value) | |
case np.uint8 : | |
value = int(raw_value) | |
case np.uint16 : | |
value = int(raw_value) | |
case np.uint32 : | |
value = int(raw_value) | |
case np.uint64 : | |
value = int(raw_value) | |
case np.float_: | |
value = int(raw_value) | |
case np.float16: | |
value = float(raw_value) | |
case np.float32: | |
value = float(raw_value) | |
case np.float64: | |
value = float(raw_value) | |
case np.single: | |
value = float(raw_value) | |
case np.double: | |
value = float(raw_value) | |
case np.datetime64 : | |
ts = pd.to_datetime(str(raw_value)) | |
value = ts.strftime('%Y.%m.%d') | |
case _: | |
value = raw_value | |
cell.put_value(value) | |
pass | |
def import_table_data_into_cells(cells,table_data,row_index,column_index,is_vertical): | |
table_row_index = row_index | |
table_column_index = column_index | |
row_count = len( table_data) | |
column_count = 0 | |
for table_row in table_data: | |
for table_cell in table_row: | |
column_count =len( table_row) | |
put_cell_value(cells,table_cell,table_row_index,table_column_index) | |
if is_vertical : | |
table_row_index = table_row_index + 1 | |
else: | |
table_column_index = table_column_index + 1 | |
if is_vertical : | |
table_row_index = row_index | |
table_column_index = table_column_index + 1 | |
else: | |
table_column_index = column_index | |
table_row_index = table_row_index + 1 | |
if is_vertical : | |
end_row_index = row_index + row_count - 1 | |
end_column_index = table_column_index - 1 | |
else: | |
end_row_index = table_row_index - 1 | |
end_column_index = column_index + column_count - 1 | |
return (row_index,column_index,end_row_index,end_column_index) | |
# Create a sample NumPy array | |
data = np.array([['City', 'Region', 'Store'], ['Chicago', 'Central', 3055], ['New York', 'East', 3036], ['Detroit', 'Central', 3074]]) | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Access the first (default) worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
begin_row_index = 0 | |
begin_column_index = 0 | |
is_vertical = False | |
import_table_data_into_cells(cells , data , begin_row_index,begin_column_index,is_vertical) | |
workbook.save("out.xlsx") |
Il risultato dell’output:
Come convertire un ndarray NumPy in ListObject
Ecco un esempio di frammento di codice per dimostrare come importare dati da un array NumPy in un ListObject utilizzando Aspose.Cells per Python via .NET:
- Creare un campione di dati di array NumPy.
- Attraversare l’array NumPy e importare i dati utilizzando Aspose.Cells per Python via .NET.
- Creare un oggetto ListObject utilizzando i dati di esempio.
import numpy as np | |
import pandas as pd | |
import aspose.cells | |
from aspose.cells import Workbook, Worksheet, Range, CellsHelper | |
def put_cell_value(cells, raw_value, row , column): | |
cell = cells.get(row , column) | |
dtype = type(raw_value) | |
match dtype: | |
case np.bool_ : | |
value = bool(raw_value) | |
case np.int_ : | |
value = int(raw_value) | |
case np.intc : | |
value = int(raw_value) | |
case np.intp : | |
value = int(raw_value) | |
case np.int8 : | |
value = int(raw_value) | |
case np.int16 : | |
value = int(raw_value) | |
case np.int32 : | |
value = int(raw_value) | |
case np.int64 : | |
value = int(raw_value) | |
case np.uint8 : | |
value = int(raw_value) | |
case np.uint16 : | |
value = int(raw_value) | |
case np.uint32 : | |
value = int(raw_value) | |
case np.uint64 : | |
value = int(raw_value) | |
case np.float_: | |
value = int(raw_value) | |
case np.float16: | |
value = float(raw_value) | |
case np.float32: | |
value = float(raw_value) | |
case np.float64: | |
value = float(raw_value) | |
case np.single: | |
value = float(raw_value) | |
case np.double: | |
value = float(raw_value) | |
case np.datetime64 : | |
ts = pd.to_datetime(str(raw_value)) | |
value = ts.strftime('%Y.%m.%d') | |
case _: | |
value = raw_value | |
cell.put_value(value) | |
pass | |
def import_table_data_into_cells(cells,table_data,row_index,column_index,is_vertical): | |
table_row_index = row_index | |
table_column_index = column_index | |
row_count = len( table_data) | |
column_count = 0 | |
for table_row in table_data: | |
for table_cell in table_row: | |
column_count =len( table_row) | |
put_cell_value(cells,table_cell,table_row_index,table_column_index) | |
if is_vertical : | |
table_row_index = table_row_index + 1 | |
else: | |
table_column_index = table_column_index + 1 | |
if is_vertical : | |
table_row_index = row_index | |
table_column_index = table_column_index + 1 | |
else: | |
table_column_index = column_index | |
table_row_index = table_row_index + 1 | |
if is_vertical : | |
end_row_index = row_index + row_count - 1 | |
end_column_index = table_column_index - 1 | |
else: | |
end_row_index = table_row_index - 1 | |
end_column_index = column_index + column_count - 1 | |
return (row_index,column_index,end_row_index,end_column_index) | |
# Create a sample NumPy array | |
data = np.array([['City', 'Region', 'Store'], ['Chicago', 'Central', 3055], ['New York', 'East', 3036], ['Detroit', 'Central', 3074]]) | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Access the first (default) worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
begin_row_index = 0 | |
begin_column_index = 0 | |
is_vertical = False | |
# ndarray to listobject | |
(begin_row_index,begin_column_index,end_row_index,end_column_index) = import_table_data_into_cells(cells , data , begin_row_index,begin_column_index,is_vertical) | |
start_cell = CellsHelper.cell_index_to_name(begin_row_index, begin_column_index) | |
end_cell = CellsHelper.cell_index_to_name(end_row_index, end_column_index) | |
index = worksheet.list_objects.add(start_cell, end_cell,True) | |
workbook.save("out.xlsx") |
Il risultato dell’output:
Come convertire un ndarray NumPy in Range
Ecco un esempio di frammento di codice per dimostrare come importare dati da un array NumPy in un Range utilizzando Aspose.Cells per Python via .NET:
- Creare un campione di dati di array NumPy.
- Attraversare l’array NumPy e importare i dati utilizzando Aspose.Cells per Python via .NET.
- Creare un oggetto Range utilizzando i dati di esempio.
import numpy as np | |
import pandas as pd | |
import aspose.cells | |
from aspose.cells import Workbook, Worksheet, Range, CellsHelper | |
def put_cell_value(cells, raw_value, row , column): | |
cell = cells.get(row , column) | |
dtype = type(raw_value) | |
match dtype: | |
case np.bool_ : | |
value = bool(raw_value) | |
case np.int_ : | |
value = int(raw_value) | |
case np.intc : | |
value = int(raw_value) | |
case np.intp : | |
value = int(raw_value) | |
case np.int8 : | |
value = int(raw_value) | |
case np.int16 : | |
value = int(raw_value) | |
case np.int32 : | |
value = int(raw_value) | |
case np.int64 : | |
value = int(raw_value) | |
case np.uint8 : | |
value = int(raw_value) | |
case np.uint16 : | |
value = int(raw_value) | |
case np.uint32 : | |
value = int(raw_value) | |
case np.uint64 : | |
value = int(raw_value) | |
case np.float_: | |
value = int(raw_value) | |
case np.float16: | |
value = float(raw_value) | |
case np.float32: | |
value = float(raw_value) | |
case np.float64: | |
value = float(raw_value) | |
case np.single: | |
value = float(raw_value) | |
case np.double: | |
value = float(raw_value) | |
case np.datetime64 : | |
ts = pd.to_datetime(str(raw_value)) | |
value = ts.strftime('%Y.%m.%d') | |
case _: | |
value = raw_value | |
cell.put_value(value) | |
pass | |
def import_table_data_into_cells(cells,table_data,row_index,column_index,is_vertical): | |
table_row_index = row_index | |
table_column_index = column_index | |
row_count = len( table_data) | |
column_count = 0 | |
for table_row in table_data: | |
for table_cell in table_row: | |
column_count =len( table_row) | |
put_cell_value(cells,table_cell,table_row_index,table_column_index) | |
if is_vertical : | |
table_row_index = table_row_index + 1 | |
else: | |
table_column_index = table_column_index + 1 | |
if is_vertical : | |
table_row_index = row_index | |
table_column_index = table_column_index + 1 | |
else: | |
table_column_index = column_index | |
table_row_index = table_row_index + 1 | |
if is_vertical : | |
end_row_index = row_index + row_count - 1 | |
end_column_index = table_column_index - 1 | |
else: | |
end_row_index = table_row_index - 1 | |
end_column_index = column_index + column_count - 1 | |
return (row_index,column_index,end_row_index,end_column_index) | |
# Create a sample NumPy array | |
data = np.array([['City', 'Region', 'Store'], ['Chicago', 'Central', 3055], ['New York', 'East', 3036], ['Detroit', 'Central', 3074]]) | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Access the first (default) worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
begin_row_index = 0 | |
begin_column_index = 0 | |
is_vertical = False | |
# ndarray to range | |
(begin_row_index,begin_column_index,end_row_index,end_column_index) = import_table_data_into_cells(cells , data , begin_row_index,begin_column_index,is_vertical) | |
start_cell = CellsHelper.cell_index_to_name(begin_row_index, begin_column_index) | |
end_cell = CellsHelper.cell_index_to_name(end_row_index, end_column_index) | |
range_obj = cells.create_range(start_cell, end_cell) | |
print("row count: " + str(range_obj.row_count)) | |
print("column count: " + str(range_obj.column_count)) | |
workbook.save("out.xlsx") |
Il risultato dell’output:
row count: 4
column count: 3
Come convertire un ndarray NumPy in Name
Ecco un esempio di frammento di codice per dimostrare come importare dati da un array NumPy in un Name utilizzando Aspose.Cells per Python via .NET:
- Creare un campione di dati di array NumPy.
- Attraversare l’array NumPy e importare i dati utilizzando Aspose.Cells per Python via .NET.
- Creare un oggetto Name utilizzando dati di esempio.
import numpy as np | |
import pandas as pd | |
import aspose.cells | |
from aspose.cells import Workbook, Worksheet, Range, CellsHelper | |
def put_cell_value(cells, raw_value, row , column): | |
cell = cells.get(row , column) | |
dtype = type(raw_value) | |
match dtype: | |
case np.bool_ : | |
value = bool(raw_value) | |
case np.int_ : | |
value = int(raw_value) | |
case np.intc : | |
value = int(raw_value) | |
case np.intp : | |
value = int(raw_value) | |
case np.int8 : | |
value = int(raw_value) | |
case np.int16 : | |
value = int(raw_value) | |
case np.int32 : | |
value = int(raw_value) | |
case np.int64 : | |
value = int(raw_value) | |
case np.uint8 : | |
value = int(raw_value) | |
case np.uint16 : | |
value = int(raw_value) | |
case np.uint32 : | |
value = int(raw_value) | |
case np.uint64 : | |
value = int(raw_value) | |
case np.float_: | |
value = int(raw_value) | |
case np.float16: | |
value = float(raw_value) | |
case np.float32: | |
value = float(raw_value) | |
case np.float64: | |
value = float(raw_value) | |
case np.single: | |
value = float(raw_value) | |
case np.double: | |
value = float(raw_value) | |
case np.datetime64 : | |
ts = pd.to_datetime(str(raw_value)) | |
value = ts.strftime('%Y.%m.%d') | |
case _: | |
value = raw_value | |
cell.put_value(value) | |
pass | |
def import_table_data_into_cells(cells,table_data,row_index,column_index,is_vertical): | |
table_row_index = row_index | |
table_column_index = column_index | |
row_count = len( table_data) | |
column_count = 0 | |
for table_row in table_data: | |
for table_cell in table_row: | |
column_count =len( table_row) | |
put_cell_value(cells,table_cell,table_row_index,table_column_index) | |
if is_vertical : | |
table_row_index = table_row_index + 1 | |
else: | |
table_column_index = table_column_index + 1 | |
if is_vertical : | |
table_row_index = row_index | |
table_column_index = table_column_index + 1 | |
else: | |
table_column_index = column_index | |
table_row_index = table_row_index + 1 | |
if is_vertical : | |
end_row_index = row_index + row_count - 1 | |
end_column_index = table_column_index - 1 | |
else: | |
end_row_index = table_row_index - 1 | |
end_column_index = column_index + column_count - 1 | |
return (row_index,column_index,end_row_index,end_column_index) | |
# Create a sample NumPy array | |
data = np.array([['City', 'Region', 'Store'], ['Chicago', 'Central', 3055], ['New York', 'East', 3036], ['Detroit', 'Central', 3074]]) | |
# Create a new Aspose.Cells Workbook | |
workbook = Workbook() | |
# Access the first (default) worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
begin_row_index = 0 | |
begin_column_index = 0 | |
is_vertical = False | |
# ndarray to Name | |
(begin_row_index,begin_column_index,end_row_index,end_column_index) = import_table_data_into_cells(cells , data , begin_row_index,begin_column_index,is_vertical) | |
start_cell = CellsHelper.cell_index_to_name(begin_row_index, begin_column_index) | |
end_cell = CellsHelper.cell_index_to_name(end_row_index, end_column_index) | |
name_text = "Name_test" | |
name_refers_to = "=" + worksheet.name + "!$" + start_cell + ":$" + end_cell | |
name_index = worksheet.workbook.worksheets.names.add(name_text); | |
name = worksheet.workbook.worksheets.names[name_index] | |
name.refers_to = name_refers_to | |
workbook.save("out.xlsx") |
Il risultato dell’output: