将 Pandas DataFrame 转换为 Excel
Contents
[
Hide
]
使用 Aspose.Cells for Python via .NET API,您可以将 pandas DataFrame 转换为 Excel、OpenOffice、Pdf、Json 和许多其他格式。
通过 json 数据将 Pandas DataFrame 转换为 Excel
以下是一个示例代码片段,演示如何使用 Aspose.Cells for Python via .NET 从 pandas DataFrame 导入数据到 Excel 文件:
- 创建示例的 pandas DataFrame 数据。
- 使用 pandas 库将 DataFrame 数据转换为 JSON 数据。
- 使用 Aspose.Cells for Python via .NET 导入 JSON 数据。
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from aspose.cells.utility import JsonUtility, JsonLayoutOptions | |
from aspose.cells import Workbook, Worksheet, Cells | |
# Create a sample pandas DataFrame | |
data = {'Name': ['Alice', 'Bob', 'Charlie'], | |
'Age': [25, 30, 35], | |
'City': ['New York', 'San Francisco', 'Los Angeles']} | |
df = pd.DataFrame(data) | |
# Convert pandas DataFrame to JSON | |
json_string = df.to_json(orient='records') | |
workbook = Workbook() | |
# Get the first worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
options = JsonLayoutOptions() | |
unit = JsonUtility() | |
# Processes as table. | |
options.array_as_table = True | |
unit.import_data(json_string, cells, 0, 0, options) | |
workbook.save("out.xlsx") |
直接将 Pandas DataFrame 转换为 Excel
以下是一个示例代码片段,演示如何使用 Aspose.Cells for Python via .NET 从 pandas DataFrame 导入数据到 Excel 文件:
- 创建示例的 pandas DataFrame 数据。
- 遍历 DataFrame 并使用 Aspose.Cells for Python via .NET 导入数据。
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import aspose.cells | |
from aspose.cells import Workbook, CellsHelper, License | |
workbook = Workbook() | |
# Get the first worksheet | |
worksheet = workbook.worksheets[0] | |
# Get the cells | |
cells = worksheet.cells | |
# create a sample DataFrame | |
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'], | |
'age': [25, 32, 18, 47], | |
'city': ['New York', 'Paris', 'London', 'Berlin']} | |
df = pd.DataFrame(data) | |
rowindex = 0 | |
colindex = 0 | |
for column in df: | |
cell = cells.get(rowindex, colindex) | |
cell.put_value(df[column].name) | |
colindex += 1 | |
for index, row in df.iterrows(): | |
rowindex += 1 | |
colindex = 0 | |
cell = cells.get(rowindex, colindex) | |
cell.put_value(row["name"]) | |
colindex += 1 | |
cell = cells.get(rowindex, colindex) | |
cell.put_value(row["age"]) | |
colindex += 1 | |
cell = cells.get(rowindex, colindex) | |
cell.put_value(row["city"]) | |
colindex += 1 | |
workbook.save("out.xlsx") |