
	Products	Aspose.TotalProduct Solution
	Aspose.WordsProduct Solution
	Aspose.PDFProduct Solution
	Aspose.CellsProduct Solution
	Aspose.EmailProduct Solution
	Aspose.SlidesProduct Solution
	Aspose.ImagingProduct
Solution
	Aspose.BarCodeProduct
Solution
	Aspose.DiagramProduct
Solution
	Aspose.TasksProduct Solution
	Aspose.OCRProduct Solution
	Aspose.NoteProduct Solution
	Aspose.CADProduct Solution
	Aspose.3DProduct Solution
	Aspose.HTMLProduct Solution
	Aspose.GISProduct Solution
	Aspose.ZIPProduct Solution
	Aspose.PageProduct Solution
	Aspose.PSDProduct Solution
	Aspose.OMRProduct Solution
	Aspose.SVGProduct Solution
	Aspose.FinanceProduct
Solution
	Aspose.FontProduct Solution
	Aspose.TeXProduct Solution
	Aspose.PUBProduct Solution
	Aspose.DrawingProduct
Solution

	Purchase	Buy Now
	Pricing Information
	Free Trials
	Temporary License
	Policies
	My Orders & Quotes
	Renew an Order
	Upgrade an Order

	Support	Docs
	API Reference
	Live Demos
	Code Samples
	Free Support
	Free Consulting
	Paid Support
	Paid Consulting
	Blog
	Knowledge Base
	New Releases
	Status

	Websites	aspose.com
	aspose.cloud
	aspose.app
	groupdocs.com
	groupdocs.cloud
	groupdocs.app
	conholdate.com
	conholdate.cloud
	conholdate.app
	containerize.com
	codeporting.com
	fileformat.com

	About	About Us
	Contact
	Legal
	Affiliates
	Events
	Acquisition

	English

	Aspose.TeX for Java API Solution
		General articles on LaTeX | Aspose.TeX for Java
	Getting Started
	Developer Guide
		Conversion
		LaTeX to image
	LaTeX to PDF
	

	LaTeX to XPS
	Other ways to provide the main TeX input file
	Aspose.TeX's input interface
	Aspose.TeX's output interface
	Other options
	Other TeX formats

	Advanced Features
	External LaTeX packages

	
	Aspose.TeX
	Java
	Developer Guide
	Conversion
	LaTeX to PDF

	Live Demos
	Source Code
	API Reference

Helpful resources ▼

	Live Demos
	Source Code
	API Reference

Download

Pricing

Buy

LaTeX to PDF | Aspose.TeX for Java
Contents
[
Hide
Show
]
	How to convert LaTeX to PDF
	An alternative way to write the main output PDF file
	About input options

How to convert LaTeX to PDF
Let’s take a closer look at the Java code providing the simplest way to convert LaTeX to PDF format.
Copy1// Create conversion options for Object LaTeX format upon Object TeX engine extension.
2TeXOptions options = TeXOptions.consoleAppOptions(TeXConfig.objectLaTeX());
3// Specify a file system working directory for the output.
4options.setOutputWorkingDirectory(new OutputFileSystemDirectory(Utils.getOutputDirectory()));
5// Initialize the options for saving in PDF format.
6options.setSaveOptions(new PdfSaveOptions());
7// Run LaTeX to PDF conversion.
8new TeXJob(Utils.getInputDirectory() + "hello-world.ltx", new PdfDevice(), options).run();

view raw
Aspose.TeX.Examples-Conversion-LaTeXToPdf-Simplest.java hosted with ❤ by GitHub

So, the first thing we need to do (sometimes not the very first, as we will find out later) is to create an instance of the
TeXOptions class. The only static method that does this is
consoleAppOptions(), so let’s not bother with the meaning of its name. The method takes an
instance of the
TeXConfig class, which is exactly suitable for converting a
LaTeX file. This configuration instructs the Object TeX engine to load the Object LaTeX format and to be ready to accept the LaTeX file. The object LaTeX format is just the
LaTeX format, except that it uses
Object TeX specific primitives to set up the page metrics.
The first of the required options is
OutputWorkingDirectory which defines the space, or area, where the TeX output will be written.
Here are the details about the output directory concept in Aspose.TeX for Java. In this example, we use the
OutputFileSystemDirectory class, which allows us to write the output to the specified directory, or folder.
The second option is a
SaveOptions class instance which will control the transformation of the
object model to the target format. Since we are converting LaTeX to PDF, it’s the
PdfSaveOptions class instance.
Then we need to create an instance of the
TeXJob class. Wanting to convert a LaTeX file stored in the file system, we use
this version of the constructor. We should specify the full path to the file. Otherwise, the engine will look for it in the current directory (which is defined
here) and most likely will not find it. Nevertheless, we may omit the extension if our file has the .tex one. The engine will append it automatically. The second argument of the constructor is a
Device class instance. Since we are converting LaTeX to PDF, it’s an
PdfDevice class instance. As the last argument, we pass the recently prepared conversion options.
All that we have to do now is to
run the job.
Regardless of whether the run was successful or not, the first result that we’ll see will be the terminal output. In case of success, it looks something like this:
Copy 1This is ObjectTeX, Version 3.1415926-1.0 (Aspose.TeX 21.8)
 2entering extended mode
 3
 4(<input_directory>\hello-world.ltx
 5LaTeX2e <2011/06/27>
 6(article.cls
 7Document Class: article 2007/10/19 v1.4h Standard LaTeX document class
 8(size10.clo))
 9No file hello-world.aux.
10[1]
11(<output_directory>\hello-world.aux))
12Output written on hello-world.pdf (1 page).
13Transcript written on hello-world.log.

We will find other products of the engine’s run in the folder that we specified as the output directory. Those will be the transcript (.log) file and, Voila!, the main output PDF file.
An alternative way to write the main output PDF file
There’s another constructor of the
PdfDevice class, which lets us get the resulting PDF file in an alternative way.
Copy 1// Create the stream to write the PDF file to.
 2final OutputStream pdfStream = new FileOutputStream(Utils.getOutputDirectory() + "any-name.pdf");
 3try {
 4 // Create conversion options for Object LaTeX format upon Object TeX engine extension.
 5 ...
 6 // Run LaTeX to PDF conversion.
 7 new TeXJob(Utils.getInputDirectory() + "hello-world.ltx", new PdfDevice(pdfStream), options).run();
 8} finally {
 9 if (pdfStream != null)
10 pdfStream.close();
11}

view raw
Aspose.TeX.Examples-Conversion-LaTeXToPdf-Alternative.java hosted with ❤ by GitHub

The any-name.pdf file in the specified directory will be our main output PDF file. At the same time, unlike
image output, we will not find any PDF files in the output directory defined by the conversion options. Exception: any-name.pdf is located (by its path) in the same file system directory that is assigned to
OutputWorkingDirectory option using
OutputFileSystemDirectory.
About input options
In case our main input file requires dependencies, for example, packages, that are not included in the basic LaTeX system and supported packages, we MUST set the
RequiredInputDirectory option the similar way we set the
OutputWorkingDirectory option and put the dependencies in that directory. Dependencies may be arbitrarily organized in subdirectories. In case we have our own files to include along the typesetting process, say external graphics files, we MUST also set the
InputWorkingDirectory using the path to the location where those files are collected. We may also place the main input file somewhere inside the input directory and specify the relative path in the run() method (or specify no path at all if the main input file is in the root).
Here are the details about the input directory concept in Aspose.TeX for Java and provided implementations.
Other TeX job options are discussed
here.
You may also check out the free LaTeX-to-PDF conversion
web app built based on
Aspose.TeX for .NET API.
Here is the Java version page.

LaTeX to image
LaTeX to XPS

Subscribe to Aspose Product Updates
Get monthly newsletters & offers directly delivered to your mailbox.

Submit

	
	
	
	
	
	
	

	Home
	Products
	New Releases
	Pricing
	Docs
	Live Demos
	Free Support
	Free Consulting
	Paid Support
	Paid Consulting
	Blog
	Websites
	About

© Aspose Pty Ltd 2001-2024. All Rights Reserved.
	Privacy Policy
	Terms of Service
	Contact

