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How to convert LaTeX to PDF
Let’s take a closer look at the Java code providing the simplest way to convert LaTeX to PDF format.
Copy1// Create conversion options for Object LaTeX format upon Object TeX engine extension.
2TeXOptions options = TeXOptions.consoleAppOptions(TeXConfig.objectLaTeX());
3// Specify a file system working directory for the output.
4options.setOutputWorkingDirectory(new OutputFileSystemDirectory(Utils.getOutputDirectory()));
5// Initialize the options for saving in PDF format.
6options.setSaveOptions(new PdfSaveOptions());
7// Run LaTeX to PDF conversion.
8new TeXJob(Utils.getInputDirectory() +  "hello-world.ltx", new PdfDevice(), options).run();



view raw
Aspose.TeX.Examples-Conversion-LaTeXToPdf-Simplest.java hosted with ❤ by GitHub

So, the first thing we need to do (sometimes not the very first, as we will find out later) is to create an instance of the
TeXOptions class. The only static method that does this is
consoleAppOptions(), so let’s not bother with the meaning of its name. The method takes an
instance of the
TeXConfig class, which is exactly suitable for converting a
LaTeX file. This configuration instructs the Object TeX engine to load the Object LaTeX format and to be ready to accept the LaTeX file. The object LaTeX format is just the
LaTeX format, except that it uses
Object TeX specific primitives to set up the page metrics.
The first of the required options is
OutputWorkingDirectory which defines the space, or area, where the TeX output will be written.
Here are the details about the output directory concept in Aspose.TeX for Java. In this example, we use the
OutputFileSystemDirectory class, which allows us to write the output to the specified directory, or folder.
The second option is a
SaveOptions class instance which will control the transformation of the
object model to the target format. Since we are converting LaTeX to PDF, it’s the
PdfSaveOptions class instance.
Then we need to create an instance of the
TeXJob class. Wanting to convert a LaTeX file stored in the file system, we use
this version of the constructor. We should specify the full path to the file. Otherwise, the engine will look for it in the current directory (which is defined
here) and most likely will not find it. Nevertheless, we may omit the extension if our file has the .tex one. The engine will append it automatically. The second argument of the constructor is a
Device class instance. Since we are converting LaTeX to PDF, it’s an
PdfDevice class instance. As the last argument, we pass the recently prepared conversion options.
All that we have to do now is to
run the job.
Regardless of whether the run was successful or not, the first result that we’ll see will be the terminal output. In case of success, it looks something like this:
Copy 1This is ObjectTeX, Version 3.1415926-1.0 (Aspose.TeX 21.8)
 2entering extended mode
 3
 4(<input_directory>\hello-world.ltx
 5LaTeX2e <2011/06/27>
 6(article.cls
 7Document Class: article 2007/10/19 v1.4h Standard LaTeX document class
 8(size10.clo))
 9No file hello-world.aux.
10[1]
11(<output_directory>\hello-world.aux) )
12Output written on hello-world.pdf (1 page).
13Transcript written on hello-world.log.


We will find other products of the engine’s run in the folder that we specified as the output directory. Those will be the transcript (.log) file and, Voila!, the main output PDF file.
An alternative way to write the main output PDF file
There’s another constructor of the
PdfDevice class, which lets us get the resulting PDF file in an alternative way.
Copy 1// Create the stream to write the PDF file to.
 2final OutputStream pdfStream = new FileOutputStream(Utils.getOutputDirectory() + "any-name.pdf");
 3try {
 4  // Create conversion options for Object LaTeX format upon Object TeX engine extension.
 5  ...
 6    // Run LaTeX to PDF conversion.
 7    new TeXJob(Utils.getInputDirectory() + "hello-world.ltx", new PdfDevice(pdfStream), options).run();
 8} finally {
 9  if (pdfStream != null)
10    pdfStream.close();
11}
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Aspose.TeX.Examples-Conversion-LaTeXToPdf-Alternative.java hosted with ❤ by GitHub

The any-name.pdf file in the specified directory will be our main output PDF file. At the same time, unlike
image output, we will not find any PDF files in the output directory defined by the conversion options. Exception: any-name.pdf is located (by its path) in the same file system directory that is assigned to
OutputWorkingDirectory option using
OutputFileSystemDirectory.
About input options
In case our main input file requires dependencies, for example, packages, that are not included in the basic LaTeX system and supported packages, we MUST set the
RequiredInputDirectory option the similar way we set the
OutputWorkingDirectory option and put the dependencies in that directory. Dependencies may be arbitrarily organized in subdirectories. In case we have our own files to include along the typesetting process, say external graphics files, we MUST also set the
InputWorkingDirectory using the path to the location where those files are collected. We may also place the main input file somewhere inside the input directory and specify the relative path in the run() method (or specify no path at all if the main input file is in the root).
Here are the details about the input directory concept in Aspose.TeX for Java and provided implementations.
Other TeX job options are discussed
here.
You may also check out the free LaTeX-to-PDF conversion
web app built based on
Aspose.TeX for .NET API.
Here is the Java version page.
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